
Navigating the Rocky Shoals of Software Copyrights Chapter 17

– i –

8862907v.2

NAVIGATING THE ROCKY SHOALS
OF SOFTWARE COPYRIGHTS

SEAN CRANDALL
Jackson Walker, LLP
112 E. Pecan Ste. 2400
San Antonio, TX 78205

State Bar of Texas
Advanced Intellectual Property Law

February 15, 2013
Austin, TX

CHAPTER 17

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– ii –

8862907v.2

Contents
I. Introduction ... 1

II. In Which Our Hero is Dashed on the Rocky Shoals of Software Coypright 1

A. The dream case walks through your door. .. 1

B. What are the rocky shoals? .. 1

III. Software Programming for Dummies and Lawyers 1

A. Computers are stupid, but they’re really good at repetition. .. 2

B. Most programs are written in high-level languages. .. 2

C. Procedures encapsulate complexity. ... 3

D. Libraries let you use other people’s code. ... 4

E. Application Programming Interfaces are the bridge between libraries and new code. 5

F. Programs can be statically or dynamically linked. ... 5

IV. Google’s Braving of the Shoals in Oracle v. Google 6

A. Google wanted Java for Android. .. 6

B. Oracle’s sued over 37 Java packages. .. 7

C. The jury found that Google copied Java’s APIs. ... 7

D. The Court held that APIs are not protectable. .. 7

E. Oracle affects Android’s “scrubbed” Linux header files. .. 8

F. A cautionary tale about programmers’ utility libraries. ... 9

V. Non-Literal Copying in Other Cases10

A. Creative structure and sequence in Whelan Associates. .. 10

B. Abstraction-Filtration-Comparison in Altai. ... 11

C. Interoperability and fair use in Sega v. Accolade. .. 12

D. Command hierarchies in Lotus v. Borland. .. 12

VI. The Rocky Shoals of “Free” Software 13

A. “Free” is not a sticker price.. 13

B. A brief introduction to hardware drivers. ... 13

C. Dynamic linking of proprietary drivers in Linux is controversial. 14

D. Transitory modifications are not derivative works in Galoob I and Galoob II. 15

E. Who’s going to sue over violating open source licenses? ... 16

VII. Conclusion .. 17

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 1 –

8862907v.2

NAVIGATING THE ROCKY SHOALS OF
SOFTWARE COPYRIGHT

I. Introduction

Your client’s own code is solid ground, but
there are vast seas of code owned by others. The
traditional method of bridging the two is to
negotiate safe passage (a license). This paper
explores some cases where your clients may brave
the rocky shoals and gain the benefit of another’s
code without permission.

II. In Which Our Hero is Dashed on
the Rocky Shoals of Software Coypright

A. The dream case walks
through your door.

You’re sitting in your office on a typical
Tuesday morning, working on yet another run-of-
the-mill case, and wishing against odds that
something interesting would walk through your
door. Just then, your secretary buzzes you and
says there’s a potential client here to see you.

In walks Polly Programmer, owner of a
successful software company. Your ears perk up
as she explains that Gazillion, a Fortune 500
company, has been infringing her copyrights in
their nearly-ubiquitous “Robot” mobile operating
system.

Then Polly drops some printouts on your
desk. She shows you page after page of
comparisons between her code and Gazillion’s
code. Line after line, it is an identical match. Sure,
Gazillion played clever and removed the
comments, but the functional part of the code is
the same. Why, they even used the same variable
names!

Polly also assures you that she registered her
copyrights before Gazillion started infringing, so
you know the case is eligible for attorneys’ fees.
And there’s no doubt that Gazillion can pay the
judgment. You normally don’t do contingency
cases, but with a head full of private jets and
tropical escapes, you sign Polly up for 33% plus
expenses.

Two years later, a jury has found that
Gazillion most definitely copied thousands of lines
of Polly’s source code. But the judge has found
that this copying didn’t constitute copyright

infringement. Now you’re taking the smoldering
scraps of your case up on appeal, hoping for a
miracle, and cursing the day that Polly
Programmer walked through your door.

How did this happen? Where did you go
wrong? How can flagrantly copying thousands of
lines of source code not be copyright
infringement? Or turned around, when and to
what extent is it okay for your clients to use
somebody else’s software without their
permission or approval? That’s what we’re here to
find out.

B. What are the rocky shoals?

There is, on the one hand, the relative safety
of terra firma—code that your client owns
outright. He or she has the run of this land, and
can exploit it at will. On the other hand, there are
vast, deep seas of code owned by others. With a
seaworthy ship, your client can navigate these in
relative safety so long as a the owner provides safe
passage, such as a license.1

But what if the other guy won’t agree to a
license, or your client just doesn’t like terms?
Between land and sea lie the rocky shoals. A clever
pilot with good soundings and a reliable map can
safely navigate between the deep sea and the solid
ground, reaping the benefits of both. Great
mariners may be able to do so even when the
treacherous pass is guarded by the shore batteries
of a hostile enemy. But the unwary seaman will
run aground and find himself dashed against
rocks or pounded by artillery.

The purpose of this paper is to explore those
rocky shoals—situations where you may be able to
exploit another’s copyrighted code without their
permission, and discuss the inherent risks and
benefits of doing so. I start with a brief primer on
how software works. I then provide examples of
situations where others have ventured into those
tricky waters.

III. Software Programming for
Dummies and Lawyers

I know. It’s unusual to find a primer on
software programming in a CLE paper. But if you

1 I don’t know what the ship represents. Sorry, no
analogy is perfect.

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 2 –

8862907v.2

find yourself wondering, as you did in 8th-grade
algebra, “When am I ever going to use this,” the
answer is “in a few pages,” when the ideas and
vocabulary I introduce here will be critical to
high-stakes, bleeding-edge copyright cases.

A. Computers are stupid, but
they’re really good at
repetition.

Your high-end laptop with its multi-core 64-
bit processor and fancy office software is stupid. It
doesn’t know how to record music or check stocks
or play chess or tally columns in a spreadsheet. In
fact, it only knows how to do about a thousand
discrete things.2 And the things it knows how to
do are fairly esoteric and individually useless, like
“add these two numbers” or “compare these two
numbers” or “jump to the supplied memory
location if a flag bit is set to 1.” As a term of art,
these thousand little tasks are called
“instructions.”3

What your computer is really good at is
executing about a billion of these useless little
instructions every second. And billions of
instructions executed very quickly, one after
another, can look very much like a computer
playing chess or tallying numbers in a
spreadsheet.

A program (an “.exe” file on a Microsoft
Windows machine, for example) is simply a terse
list of instructions for the computer to execute
(usually looping back on itself, so that the
program doesn’t terminate until it is told to).

To do something simple like “add ‘A’ to ‘B’
and store the result in location ‘C,’” a computer
might execute the following pseudo-instructions:

MOVE INTO REGISTER A VARIABLEA
MOVE INTO REGISTER B VARIABLEB
ADD TO REGISTER A REGISTER B
STORE REGISTER A INTO VARIABLEC

2 See, e.g.,
http://en.wikipedia.org/wiki/X86_instruction_listings
, visited on January 7, 2013.

3 See
http://en.wikipedia.org/wiki/Instruction_(computer_
science) , visited on January 7, 2013.

The instruction “MOVE” in our made-up
machine code is represented by a short (probably
8-bit) binary4 “operation code” or “opcode,”5 like
“10001000”. This is followed by another byte
representing REGISTER A, and then the memory
address of VARIABLEA, all in cryptic binary. Each
opcode activates a particular circuit within the
processor that carries out its designated function,
retrieving information from or storing it in the
designated location as instructed. Computers are
very good at chewing through huge numbers of
these instructions, over and over, all day long, the
end result of which is useful work (or less useful
stuff, like gaming and web surfing).

B. Most programs are written
in high-level languages.

While it’s theoretically possible for a person
to write programs in raw binary language,6 it’s not
practical for most non-trivial programs.

Most programmers instead use one of a
multitude of “high-level” languages,”7 which
provide a layer of abstraction over the raw
instruction set. With a high-level language, the
programmer who wants to add “A” to “B” and
store the result in C can simply write something
like:

C = A + B;

Or if he wants to add A to B only if “D” is true,
he can write:

if(D)
 C = A + B;

4 Binary is a “base-2” number system, in which the only
available values are “0” and “1.” In binary, 1 = 1, 2 = 10,
3 = 11, 8 = 1000, 9 = 1001, 10 = 1010, 16 = 10000, and
so forth.

5 See http://en.wikipedia.org/wiki/Opcode, visited on
January 7, 2013.

6 In fact I had to do so once, with pencil and paper, on
an undergrad final exam.

7 See
http://en.wikipedia.org/wiki/High_level_language,
visited on January 7, 2013.

http://en.wikipedia.org/wiki/X86_instruction_listings
http://en.wikipedia.org/wiki/X86_instruction_listings
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Instruction_(computer_science)
http://en.wikipedia.org/wiki/Opcode
http://en.wikipedia.org/wiki/High_level_language

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 3 –

8862907v.2

Of course, a computer is stupid (as I
mentioned). It no more knows what to do with “C
= A+B” than you know what to do with
“10001011.” So high-level languages also require
an intermediate program called a “compiler,”8 or
“interpreter.”9

The compiler reads a properly-formatted text
file, parses out the commands, and translates
those commands into a string of corresponding
instructions. The resulting output is called “object
code.”

For example, if I am using the venerable “C”
programming language, I might type the following
in a plain text file called “hello.c”:

#include<stdio.h>
int main(void)
{
 printf(“Hello world!\n”);
 return 0;
}

We will discuss the “include” directive later.
Moving to the second line, in C, the main program
is always contained in a procedure called
“main().” The keyword”int” means that the
procedure “main” will return (i.e., output) an
integer and “void” means it has no parameters
(i.e., input). The body of the procedure is set off by
opening and closing curly braces ({}). The
“printf()” line tells the computer to print the
words “Hello World!” to the screen.10 Finally, the
program returns “0,” meaning that execution was
successful.

In a command window, I can now compile
with the free11 “gcc” compiler, telling it to output a
new filed called “hello.exe,” and run my program
as follows:

8 See http://en.wikipedia.org/wiki/Compiler, visited
on January 7, 2013. The differences between compiled
and interpreted languages are beyond the scope of this
paper. For simplicity, throughout the remainder, I will
assume that programs are compiled.

9 See
http://en.wikipedia.org/wiki/Interpreter_(computing)
, visited on January 7, 2013.

10 If you’re wondering, the trailing “\n” is a special
command character that means “start a new line.”

11 See VI.A below for what “free” really means.

The file “hello.exe” now contains a long string
of binary instructions. When I ran the program,
the computer flew through those instructions at
lightning speed, printing the message on the
screen just as it was instructed to do.

C. Procedures encapsulate
complexity.

For tasks more complex than simple
arithmetic, most languages include a “library” of
pre-defined tasks called “procedures,” “methods,”
or “functions” (despite some academic
differences, those terms will be used
interchangeably here). A procedure is like a
miniature program that (ideally) performs a
single, well-defined task and (ideally) has a
somewhat-descriptive name. Programmers invoke
a procedure by typing the procedure’s name in the
appropriate place in a program, as I did with
“printf()” in my example program.

“printf()” is provided with any standard C
compiler, but Programmers are also able to define
their own procedures for complex or repetitive
task. Programmer can (and should) also build
procedures on top of each other. Thus, the main
part of a program may in fact make only a few
very high-level procedure calls. Those procedures
will call lower-level procedures, which will call
other, yet-lower-level procedures, and so on.
Breaking a program down into several layers of
abstraction lets programmers visualize discrete
tasks and start with basic building blocks that can
be tested and debugged before putting them
together one level up. They are also able to re-use
code, both within a project and from project to
project.

As a practical example that every lawyer can
grasp, assume that I have a database of every
reported case in American jurisprudence. I am
writing a program that aids lawyers in legal
research, and my program will frequently pull a

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Interpreter_(computing)
http://en.wikipedia.org/wiki/Interpreter_(computing)

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 4 –

8862907v.2

case by citation from that database. After
receiving the correct citation, I may need to
ensure that it’s valid and that the case exists
before querying my database to pull the case. I
may also want to apply some useful formatting to
the text of the case.

Rather than re-type the commands every time
my program needs to pull a case, I can define a
procedure. This procedure will accept three
inputs: a volume, a case reporter, and a page
number. In return, it will provide a long
alphanumeric string with the full, formatted text
of the case. My definition of the procedure might
look like this:

//Pulls a case by citation
//Needs volume, reporter, page
//Returns the text of the case
String FindByCitation(
 int Volume,
 String Reporter,
 int PageNum)
{
String CaseText;
boolean valid;
valid = ValidateCite(volume,
Reporter, PageNum);
if (valid)
 CaseText = GetCase(volume,
Reporter, PageNum);
 else return ERROR;
FormatCase(&CaseText);
return CaseText;
} //end of FindByCitation

The first three lines (preceded by “//”) are
comments, and are ignored by the compiler. Their
sole purpose is to make the software more
readable by humans. The first comment here says
what the procedure is for, the second describes
the expected inputs, and the last describes the
output.

On the next line, I indicate that my procedure
will return a string of text (type String).12 Other
procedures might return single characters (“A”),
integers (“724”), or floating point numbers
(“14.987”). The procedure is named
“FindByCitation.” I then indicate the three inputs
(called “parameters,”) that my procedure will
receive. First is an integer (int) representing the

12 If you’re thinking, “Wait a minute! String isn’t a
native C type!” (1) Good for you. (2) Just go with me on
it.

reporter volume. Next is a string representing the
name of the reporter. Third is another integer
representing the page number.

Within the two curly braces I put my
miniature program. First, I “declare” variables,
which are containers I will use to hold data. One is
a String called “CaseText.” The other is
a boolean (true/false variable) that will indicate
whether the citation is valid.

Next, I call the procedure “ValidateCite(),”
which will return true if the citation is valid
and false if it is invalid. I assign the return value
of ValidCite() to the boolean variable “valid.”
Then I have a test. If “valid” is true, I use
GetCase() to query the database and assign the
return string to CaseText. If “valid” is false (the
“else” part), I return a pre-defined ERROR code.13

Finally, I send CaseText to a procedure that
formats the text. My last task is to return
CaseText, or in other words, designate CaseText
as my output value and terminate the procedure.

After I have defined it, FindByCitation() acts
as a “black box.” Whenever I need my program to
find a case by citation, I need only call the
procedure.

Notice, however, that FindByCitation() relied
on several lower-level procedures. I will also need
to define and test those, along with any
procedures they rely on. Since it’s handy to keep
these in one place, I can type them all up in a
single text file called “findcases.c.”

D. Libraries let you use other
people’s code.

What if instead of writing legal research
software, I want to focus on selling my database
itself. As an added value, I will provide a set of
procedures that programmers can use to easily
access the database. But there’s a catch: I don’t
want my customers to have access to “findcases.c”
because it contains trade secrets.

In this case, I can use a compiler not to
produce a final executable file, but rather the
intermediate “object” file “findcases.o.” This file
contains all the binary instructions to carry out
FindByCitation(), along with other procedures I
want to provide to my customers.

13 After returning the error code, the procedure exits
and the rest of the instructions in it are not executed.

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 5 –

8862907v.2

My customers’ compilers will have to know
about FindByCitation() so that they recognize it as
a valid procedure and so that they know what
inputs and outputs to expect. To tell the compiler
about procedures I have defined elsewhere, I can
use a “header” file “findcases.h.” This header file
will contain “declarations” of procedures. For
example:

//findcases.h
String FindByCitation(int Volume,
 String Reporter,
 int PageNum));

When a programmer wants to access to the
procedures in “findcases.o,” he will “include”
findcases.h in his program. The header file does
not compile into actual code; it just gives the
compiler a heads-up on what to expect. Now he
can call FindByCitation(). For example, his main.c
might look like this:14

#include<stdio.h>
#include<findcases.h>
int main(void)
{
 String Lotus;
 Lotus = FindByCitation(516, US,
233);
 printf(“Text of Lotus v.
Borland:\n%s\n”, Lotus);
 return 0;
}

Without a header file, the compiler would not
have known about FindByCitation(), and would
have returned an error.

E. Application Programming
Interfaces are the bridge
between libraries and new
code.

A group of files providing related procedures
may be referred to as a “library” or a “package.”15

14 Of course, realistically he won’t know in advance that
Lotus is the case his user wants. More likely, my
program will scan a document for cases, parse out the
citations, plug those into the procedure on the fly, and
pull each case for the user to review.

15 Again, these terms will be used interchangeably here.

The library vendor also provides an accompanying
“Application Programming Interface,”16 which
includes appropriate header files with
declarations of available procedures. Libraries can
be provided either with source code or with binary
object code, but either way, header files are
provided in plain text form.

F. Programs can be statically
or dynamically linked.

In the above example, main.c alone does not
have all the instructions to make a full, executable
program—some of those instructions are in
findcases.o. So the programmer will compile
main.c into an intermediate object file called
“main.o.” He will then use a program called a
“linker”17 to “link” the two object files together
into a single executable file. This is called “static
linking.” A statically-linked program, in its final
form, contains all necessary instructions for
executing the program.

But static linking has some disadvantages.
For example, if I look at my hello.exe program, I
find that it is about 44,000(!) bytes long.
Assuming for argument that each instruction is
one byte long and has two one-byte parameters,
that’s around 15,000 discrete instructions, which
seems like a lot to just print “Hello World!” to the
screen.

The problem is that we statically-linked the
entire C standard library into our tiny little
program.18 Most of those instructions have
nothing to do with our trivial little task.

This can be an even bigger problem in non-
trivial software. What if I write 20 programs that
all rely on findcases.o? That’s 20 copies of the
exact same code floating around. And if my
vendor provides an update to findcases.o, I have
re-link every one of those programs.

16 See http://en.wikipedia.org/wiki/Api, visited
January 7, 2013.

17 See
http://en.wikipedia.org/wiki/Linker_(computing),
visited January 7, 2013.

18 See
https://blogs.oracle.com/ksplice/entry/hello_from_a
_libc_free, visited Jan. 7, 2013, for an interesting guide
to creating a stripped-down version of “Hello World!”

http://en.wikipedia.org/wiki/Api
http://en.wikipedia.org/wiki/Linker_(computing)
https://blogs.oracle.com/ksplice/entry/hello_from_a_libc_free
https://blogs.oracle.com/ksplice/entry/hello_from_a_libc_free

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 6 –

8862907v.2

The solution is to use “shared object”19 or
“dynamic link”20 libraries. These libraries, which
come with appropriate “.so” or “.dll” extensions,
are never gobbed onto the main program by a
linker. Rather, they sit on your disk in their binary
form. When a program needs to use
FindByCitation(), it loads findcases.so into
memory and then finds and executes the
appropriate instructions.

IV. Google’s Braving of the Shoals in
Oracle v. Google

We now turn to perhaps the hottest case in
copyright law today, in which Google brazenly
copied parts of Oracle’s Java API and still came
out on top.

A. Google wanted Java for
Android.

With plans to eventually launch their own
Google-branded smart phone, Google purchased a
startup called Android, Inc. in 2005.21 Android’s
main product was a Linux-based operating system
for smart phones and tablets.22

Google wanted to provide Java, a very
popular high-level language, as the main
programming environment for Android.23 To this
end, Google started negotiating with Sun
Microsystems (Oracle’s predecessor) in 2005,
intending to license Java. But negotiations broke
down, and no deal was reached.24

Google was undeterred. At its core, Java is
just a language specification that anybody is free
to use, defining for example key words, operators,

19 For Unix-like operating systems.

20 For Microsoft Windows.

21 See
http://en.wikipedia.org/wiki/Android_(operating_sys
tem), visited on January 7, 2013.

22 Id.

23 See Oracle America, Inc. v. Google, Inc., 872
F.Supp.2d 974, 978 (N.D. Cal. May 31, 2012).

24 Id.

syntax, and rules.25 Theoretically, anybody is free
to write his own Java implementation using that
specification.26 And Google had the resources to
write its own version of Java.

The problem was packages. As of 2008, Java
had 166 packages, containing more than 6,000
discrete methods (Java’s name for a procedure).27
Those methods were grouped into more than 600
object “classes.”28

A seasoned Java programmer would expect to
have access to many of these methods when
writing an Android program. He would also
expect to be able to re-use much of the code he
had written for other environments, which would
contain calls to popular Sun Java methods.29 So
lacking a license from Sun, Google simply
implemented the methods themselves. This gives
Android developers access to those methods
without encumbering Android with a license from
Sun.30

The problem is that Google also needed
headers to declare the methods in their cleanly-
implemented version of Java packages. And since
the method names and variable names were
identical (by design), the headers are also
identical. The copied headers comprised about
3% of Google’s Java implementation.31 Google

25 Id. at 982.

26 Id. In fact, there are many independent
implementations of older languages, like C and
Fortran.

27 Id. at 977.

28 A discussion of object-oriented programming is
beyond the scope of this paper. Those who are
interested can see
http://en.wikipedia.org/wiki/Object_oriented_progra
mming.

29 See id. at 978.

30 Using our fictional “FindByCitation()” as a concrete
example, Google knew that Android programmers
would expect to have access to FindByCitation() in
their programs, and would probably be recycling code
that already had calls to FindByCitation(). Since they
didn’t have a license to Sun’s version, they just wrote
their own.

31 Id. at 979.

http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Android_(operating_system)
http://en.wikipedia.org/wiki/Object_oriented_programming
http://en.wikipedia.org/wiki/Object_oriented_programming

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 7 –

8862907v.2

believed that the headers were functional, and
therefore not protectable under copyright.

B. Oracle’s sued over 37 Java
packages.

In 2010, after acquiring Sun, Oracle sued
Google in the Northern District of California32
over Google’s implementation of 37 Java packages
duplicated from Sun Java. Oracle could not, and
did not, complain specifically of Google
duplicating the functionality of the 37 packages.
That would be tantamount to claiming a patent in
the methods. Rather, Sun’s complaint was over
Google’s copying of the API header files.

Oracle conceded that Java itself (as a
language) is simply a standard and that anybody
is free to implement it. But they argued that there
is a “bright line” distinction between the Java
language specification, and Oracle’s standard
classes and methods, which are copyrighted.33
Regarding functionality, Oracle’s position was
that Google had copied protectable “structure,
sequence, and organization”34 from their Java
packages.

C. The jury found that Google
copied Java’s APIs.

The court decided to try the lawsuit in three
phases: first, the jury would determine copyright
issues, then patent issues, and finally damages if
any.35

In the first phase, the jury would make factual
findings on infringement, fair use, and whether
the copying was de minimis.36 They were
instructed by the court to assume that the APIs
were copyrightable, although the Court had

32 Oracle America, Inc. v. Google, Inc., Cause No. 3:10-
CV-03561. See 872 F.Supp.2d 974 (N.D. Cal. May 31,
2012).

33 Id.at 982.

34 Id. at 984.

35 Id. at 975.

36 Id.

actually reserved that question for later
determination as a matter of law.37

After a six-week trial, the jury found that
Google had infringed by copying the Java API, but
deadlocked on the question of whether the
infringement was fair use. They also found that
Google had literally copied one small snippet of
actual code owned by Oracle—a nine-line method
called “rangeCheck.”38

D. The Court held that APIs
are not protectable.

At the outset, the court disagreed with
Oracle’s theory of a “bright line” distinction
between the Java language specification and the
Java packages.39 Three of the packages were
“core” to the Java language, and “anyone free to
use the [Java] language itself … must also use the
three core packages in order to make any
worthwhile use of the language.”40

The Court also made short work of the
individual method declarations, noting that those
were required by the language specification itself.
The only creative elements were the names of the
methods, and the names of the parameters. But,
the court noted, “names, titles, and short phrases
are not copyrightable[.]”41

This left only the “structure, sequence, and
organization.” The court opened with a discussion
of Baker v. Seldon,42 in which Baker sued Seldon
over Seldon’s copying a system of double-entry
bookkeeping. The Supreme Court held that
Baker’s use of the accounting system was not
copyright infringement, even though it was copied
from Baker’s book. Importantly, the Court
introduced the “merger doctrine” of copyright:

37 Id. This ensured that if the court was reversed on
appeal, the jury’s findings would stand and there would
be no need for a retrial.

38 Id.

39 Id. at 982.

40 Id.

41 Id. at 983.

42 101 U.S. 99, 25 L.Ed. 841 (1879).

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 8 –

8862907v.2

[W]here the art [a book] teaches
cannot be used without employing
the methods and diagrams used to
illustrate the book … such methods
and diagrams are to be considered
as necessary incidents to the art,
and are given therewith to the
public … for the purpose of
practical application.43

When Congress revised section 102(b) of the
copyright act in 1976, it expressly added a Baker-
like limit to copyrights.44

While admitting that individual names are
not copyrightable, Oracle argued45 that its
organization of 6,000 methods into 600 classes,
and those 600 classes into 37 packages was a
“taxonomy,” protectable under American Dental
Association v. Delta Dental Plans Association.46

But the court disagreed. While Oracle’s
selection of package and class hierarchy was
creative, original, and similar to a taxonomy,47 the
court found that it was nevertheless a non-
copyrightable command structure under 17 U.S.C.
§ 102(b).48

Particularly important to the court’s analysis
was that the Java language specification required
methods to be called in the form

java.package.Class.method()

43 Oracle, 872 F.Supp.2d at 985, quoting Baker v.
Seldon, 101 U.S. 99, 103 (1879) (emphasis added).

44 See 17 U.S.C. § 102(b) (“In no case does copyright
protection for an original work of authorship extend to
any idea, procedure, process, system, method of
operation, concept, principle, or discovery, regardless
of the form in which it is described, explained,
illustrated, or embodied in such work”); see also Apple
Computer, Inc. v. Microsoft Corp., 35 F.3d 1435, 1443
n.11 (9th Cir. 1994).

45 Oracle, 872 F.Supp.2d at 999.

46 126 F.3d 977 (7th Cir. 1997).

47 Oracle, 872 F.Supp.2d at 999.

48 Id.

(meaning the method “method()” in the class
“Class” in the package “package” in the core java
language).

The court also noted that “millions of lines of
code had been written in Java before Android
arrived.”49 All of these programs invoked core
Java methods in the
“java.package.Class.method()” format. “In order
for at least some of this code to run on Android,
Google was required to provide the same
java.package.Class.method() command system
using the same name with the same ‘taxonomy’
and with the same functional specifications.”50

Thus, although Google had essentially copied
thousands of lines of code from Oracle, they did
not infringe on Oracle’s copyrights.

Both sides have appealed the case to the
Federal Circuit.51

E. Oracle affects Android’s
“scrubbed” Linux header
files.

The court’s holding in Oracle implicates
another controversy surrounding Android. This
one involves not a multibillion-dollar corporation
but free software activists.

Once again, the issue is that Google wanted
its own licensing terms—this time for the C
standard library. Android is built on top of the
Linux kernel, which is licensed under the GNU
General Public License (GPL). The GPL is a
“strong copyleft” license,52 ensuring that source
code is available not only for the original work,
but also for any derivative works.

Google wanted to license parts of Android
under the more permissive BSD license.53 This
means that they would be providing code to their
customers, but would permit those customers to
keep their own changes proprietary.

49 Id. at 1000.

50 Id.

51 Oracle America, Inc. v. Google, Inc., No. 13-1021 and
13-1022, (Fed. Cir. October 19, 2012).

52 See VI.A below.

53 See http://www.zdnet.com/blog/burnette/patrick-
brady-dissects-android/584, visited on January 7,
20133

http://www.zdnet.com/blog/burnette/patrick-brady-dissects-android/584
http://www.zdnet.com/blog/burnette/patrick-brady-dissects-android/584

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 9 –

8862907v.2

The standard C library, like the Java packages
discussed above, provides a number of procedures
that programmers expect to find in a C
environment, and in fact that form part of the
ANSI C specification.54 Most Linux distributions
use an implementation called “glibc” (GNU C
Library). Like the kernel, glibc is licensed under
the GPL.

Once again, Google wrote its own
implementation of the standard library, calling it
“Bionic.”55 But once again, there was an issue with
headers. The C library needs to interface with the
kernel, and the header files for procedures
provided by the kernel are licensed under the
GPL. Google could not provide those headers, or a
derivative work of those headers, without binding
themselves to the GPL.

Google’s solution was to download a copy of
the kernel headers and run them through its own
in-house program that scrubbed out comments,
copyright notices, and other non-essential
information.56 It then distributed Bionic, along
with the modified headers, under its preferred
BSD license.

A small storm erupted57 and a Boston-based
attorney penned a piece58 for the Huffington Post
opining that the header files could be a
compliance problem for Google. But others

54 See
http://en.wikipedia.org/wiki/C_standard_library and
http://en.wikipedia.org/wiki/Ansi_C, visited January
7, 2013. The specification itself can be purchased from
http://www.iso.org/iso/iso_catalogue/catalogue_tc/ca
talogue_detail.htm?csnumber=57853, visited January
7, 2013.

55 See http://en.wikipedia.org/wiki/Bionic_(software),
visited January 7, 2013.

56 See
http://www.theregister.co.uk/2011/03/29/google_and
roid_and_the_linux_headers/, visited on January 7,
2013.

57 See, e.g.,
http://www.fosspatents.com/2011/03/googles-
android-faces-serious-linux.html, visited January 7,
2013.

58 http://www.huffingtonpost.com/edward-j-
naughton/googles-android-contains-_b_836697.html,
visited January 7, 2013.

weighed in, including Linus Torvalds, the original
author of Linux, and Richard Stallman, the
notorious free software activist, countering that
they believed the scrubbed header files were not a
problem.59 If the Northern District of California’s
holding in Oracle survives appellate review, they
would seem to be right. The eventual holding will
be directly on-point for Bionic and the “scrubbed”
Linux header files.

F. A cautionary tale about
programmers’ utility
libraries.

After all the high-stakes fighting over
thousands of Java methods that Google
implemented independently, there was one bit of
Oracle’s code that Google literally infringed.
Although it’s not really on-point for this paper, it’s
worth mentioning briefly because it implicates a
common practice for employee-programmers.

After testing 15 million lines of Google code,
Oracle managed to find nine lines that appeared
to be a verbatim copy of an Oracle “rangeCheck()”
method.60 There was nothing exciting or special
about rangeCheck(). It just checked the range on a
list so it could be sorted. But it was most definitely
copied from code owned by Oracle. Recognizing
rangeCheck() as a problem, Google promptly
rewrote it for the next version of Android.61

But how did those embarrassing nine lines of
code end up in Java? They came from Dr. Joshua
Bloch, who from 1996 to 2004 had worked as a
software engineer at Sun. In 2004, he went to
Google to become its “chief Java architect,” and
worked on Android for about a year.62 While
working on Android, he rolled some old code into
one of the Android packages, including those nine
lines of code he had written while at Sun.63

59 See
http://www.theregister.co.uk/2011/03/29/google_and
roid_and_the_linux_headers/, visited on January 7,
2013.

60 Oracle America, Inc. v. Google, Inc., 872 F.Supp.2d
974, 983 (N.D. Cal. May 31, 2012).

61 Id.

62 Id.

63 Id.

http://en.wikipedia.org/wiki/C_standard_library
http://en.wikipedia.org/wiki/Ansi_C
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=57853
http://en.wikipedia.org/wiki/Bionic_(software)
http://www.theregister.co.uk/2011/03/29/google_android_and_the_linux_headers/
http://www.theregister.co.uk/2011/03/29/google_android_and_the_linux_headers/
http://www.fosspatents.com/2011/03/googles-android-faces-serious-linux.html
http://www.fosspatents.com/2011/03/googles-android-faces-serious-linux.html
http://www.huffingtonpost.com/edward-j-naughton/googles-android-contains-_b_836697.html
http://www.huffingtonpost.com/edward-j-naughton/googles-android-contains-_b_836697.html
http://www.theregister.co.uk/2011/03/29/google_android_and_the_linux_headers/
http://www.theregister.co.uk/2011/03/29/google_android_and_the_linux_headers/

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 10 –

8862907v.2

The court characterized Oracle’s position on
the issue as “overblown,”64 but the incident is
instructive because programmers do this all the
time. In my personal interaction with employed
programmers, I have found that many write their
own little libraries of useful procedures for tasks
they find themselves repeatedly running into:
things like formatting a date, or sorting some
numbers, or validating strings. In fact, when in a
previous life I worked as a programmer for a
major defense contractor, I had my own library of
useful little procedures.

Employers do not specifically task
programmers with creating these little utility
libraries, and in fact, the employers usually don’t
even know or care that they exist. But these little
utility libraries are works “prepared by an
employee within the scope of his or her
employment,”65 and are therefore works for hire
owned by the employer.

The problem is that most programmers don’t
think of them that way.66 They treat the utility
libraries as their own personal property and (even
worse), carry them from employer to employer,
adding to them and improving them along the
way.67 I have no way of knowing how many of
these little utility libraries exist in the world, but it
is certain that they are rife with sticky copyright
issues. A programmer’s first employer almost
certainly owns the copyright in the original utility
library, but as the library evolves over the course
of three or four employers, it becomes a derivative
work (of a derivative work, of a derivative work…).
It would unquestionably be expensive to pay
lawyers to fight over ownership of one of these
libraries if it ever mattered.

As a practical matter, little utility libraries
comprise only a minuscule portion of any non-
trivial code base, and if one is discovered in
litigation, Google’s solution here is the best:

64 Id. at 982

65 35 U.S.C. § 101.

66 I can’t prove this by citing to a case. It’s just based on
my personal experience speaking with other
programmers and reading what they write on internet
blogs.

67 I didn’t do this with my library. I went straight from
my work with the defense contractor to law school.

immediately get rid of it and have a different
programmer re-write the affected procedures.

But as a prophylactic, it’s best for your clients
to have a firm, written policy about such libraries.
Employees should be instructed that any utilities,
no matter how trivial, developed while in your
client’s employ are owned by the client. They
should also be instructed to discard any libraries
they developed while working for another
employer, preferably as part of new-hire
orientation.

Expect to meet some resistance and
grumbling. Programmers hate losing work and
“reinventing the wheel.” But some grumbling on
the front end can save a lot of attorneys’ fees on
the back end.

V. Non-Literal Copying in Other
Cases

Before coming to its conclusion in Oracle, the
Northern District of California thoroughly
discussed other cases dealing with non-literal
copying, some of which are worth mentioning
here.

A. Creative structure and
sequence in Whelan
Associates.

In Whelan Associates, Inc. v. Jaslow Dental
Laboratory, Inc.,68 Jaslow had originally
contracted with Whelan for Whelan to write a
program to manage Jaslow’s dental practice.
Jaslow later decided to break ties with Whelan,
and wrote his own version of the program in a
different high-level language.69 Importantly, there
were no allegations of direct copying of either
source code or object code.70 Rather, Whelan
charged, and the district court found, that Jaslow
had copied the “overall structure” of her code.
Specifically:

The programs were similar in three
significant respects …. [M]ost of
the [(1)] file structures, and the

68 797 F.2d 1222 (3rd Cir. 1986).

69 Id. at 1225 – 7.

70 Id. at 1233.

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 11 –

8862907v.2

[(2)] screen outputs, of the
programs were virtually identical
…. [And] five particular
[procedures] within both programs
… performed almost identically in
both programs.71

Thus, despite the important difference that
there was no claim of literal copying of even
header files, the claims of duplicated structure
were nearly identical to those in Oracle.

The Third Circuit found that “the purpose or
function of a utilitarian work would be the work’s
idea, and everything that is not necessary to that
purpose or function would be part of the
expression of the idea.”72 On this theory, the Third
Circuit found that Jaslow had infringed Whelan’s
copyright because “there were many ways to
perform the same function … with different
structures and designs.73

B. Abstraction-Filtration-
Comparison in Altai.

In Computer Associates International, Inc. v.
Altai,74 CA’s competitor Altai hired away one of
CA’s programmers, who took with him an
unauthorized copy of some important source
code.75 This code found its way into Altai’s
competing product, whereupon CA registered
their copyrights and sued Altai. Altai immediately
took the programmer off of the project and had
other programmers who had never seen the
offending code rewrite the relevant procedures.
CA maintained its lawsuit on both the old version
(with literal copying) and the new, rewritten
version.76

71 Id. at 1228.

72 Id. at 1236.

73 Oracle America, Inc. v. Google, Inc., 872 F.Supp.2d
974, 988 (N.D. Cal. May 31, 2012), citing Whelan, 797
F.2d at 1238.

74 982 F.2d 693 (2d Cir. 1992).

75 See section IV.F above for other hazards of
programmers carting around rogue source code.

76 Altai at 698 – 700.

The Second Circuit criticized the Third
Circuit’s bright line between idea and expression
in Whelan as being “conceptually overbroad.”77 In
its stead, the Second Circuit established a three-
step test of (1) abstraction, (2) filtration, and (3)
comparison.78

In the abstraction step, “a court should
dissect the allegedly copied program's structure
and isolate each level of abstraction contained
within it.”79 For example, at the lowest level of
abstraction, the program is a series of individual
binary instructions. Using Java as an example,
individual methods would be another level of
abstraction, classes (each containing a variety of
variables and methods) are one level up from that,
and packages (each containing a variety of classes)
would be yet one level up. At the highest level of
abstraction is the ultimate purpose of the
program.

The filtration step is where the real work
begins. Here, protectable expression must be
separated from non-protectable ideas.

This process entails examining the
structural components at each level
of abstraction to determine
whether their particular inclusion
at that level was “idea” or was
dictated by considerations of
efficiency, so as to be necessarily
incidental to that idea; required by
factors external to the program
itself; or taken from the public
domain and hence is
nonprotectable expression.80

Returning, for example, to Sun Java, the
selection of the particular “taxonomy” was driven
by the language specification itself, and therefore
was not protectable.

Finally, at the comparison step, the non-
filtered elements of the accused work are
compared to their corresponding structures in the
allegedly-infringed work. This step involves the

77 Id. at 705

78 Id. at 706.

79 Id. at 707.

80 Id.

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 12 –

8862907v.2

familiar steps of evaluating substantial similarity
and importance.81

In Gates Rubber Co. v. Bando Chemical
Industries, Ltd.,82 the Tenth Circuit adopted and
approved of the abstraction-filtration-comparison
test, and also defined a scenes a faire doctrine for
computer software.

C. Interoperability and fair
use in Sega v. Accolade.

In 1991, Accolade decided to start publishing
games for the popular Sega Genesis console, but
did not like Sega’s requirement that Sega be the
sole distributor for all Genesis games.83 So rather
than take a license from Sega, Accolade decided to
reverse engineer existing Genesis games to figure
out how to make a game compatible.

Accolade decompiled three Genesis games
and using information gathered from the process,
wrote a manual for developing Genesis-
compatible games. Accolade then went on to
produce several titles for the console.84

Sega sued Accolade for copyright
infringement, and on appeal the Ninth Circuit
framed the issue as “whether the Copyright Act
permits persons who are neither copyright
holders nor licensees to disassemble a copyrighted
computer program in order to gain an
understanding of the unprotected functional
elements of the program.”85 One critical point was
that Accolade had admittedly made unauthorized
copies of the three games as an intermediate step
in the reverse-engineering process.

Treating the “intermediate copying” question
as one of first impression, the Ninth Circuit found
that creating an unauthorized copy of object code
as an intermediate step in reverse engineering
may be an act of infringement, “regardless of

81 Id. at 710.

82 9 F.3d 823 (10th Cir. 1993).

83 Sega Enterprises Ltd. v. Accolade, Inc., 977 F.2d
1510 (9th Cir. 1993).

84 Id. at 1514 – 1515.

85 Id. at 1514.

whether the end product of the copying also
infringes those rights.”86

The court also rejected Accolade’s argument
that copying and reverse engineering object code
for the sole purpose of interoperability was an
exception to the copyright statute. The court
noted that “Accolade’s argument … is, in essence,
an argument that object code is not eligible for the
full range of copyright protection”87—a
proposition that the court rejected, noting that the
ideas and functional concepts underlying many
types of software are “readily discernible without
the need for disassembly[.]”88

So even though Accolade’s final product did
not directly infringe on any of Sega’s games,
Accolade’s sole remaining defense was fair use.
After discussing the familiar four-factor test, the
Ninth Circuit went a step further and held that, as
a matter of law, “where disassembly is the only
way to gain access to the ideas and functional
elements embodied in a copyrighted computer
program and where there is a legitimate reason
for seeking such access, disassembly is a fair
use[.]”89

D. Command hierarchies in
Lotus v. Borland.

The controversy in Lotus Development Corp.
v. Borland International, Inc.90 was over
command hierarchies. Lotus was a very popular
early spreadsheet program, and included 469
user-accessible commands, accessible via more
than 50 menus and submenus.91

Borland built a competing product with
“enormous innovations,” but copied the Lotus
command hierarchy almost verbatim. The
outcome of this case will not be a surprise to any

86 Id. at 1519.

87 Id. at 1520.

88 Id.

89 Id. at 1527 – 8.

90 49 F.3d 807 (1st Cir. 1995).

91 Id. at 809. Menu options are organized into
“ribbons” on some modern interfaces, but the basic
functionality is still the same as it has been for decades.

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 13 –

8862907v.2

modern computer user, who expects as a matter of
course to find some type of menu labeled “File”
near the upper left corner of the screen, and for
this menu to include options like “Save,” “Save
As,” “Open,” “Close,” “Print,” and “Exit.”

But in fact, without the past twenty years of
hindsight, the district court found that Lotus’s
command hierarchy was a protectable
expression.92 The First Circuit disagreed.

We think that “method of
operation,” as that term is used in §
102(b), refers to the means by
which a person operates
something….. Thus, a text
describing how to operate
something would not extend
copyright protection to the method
of operation itself …. Similarly, if a
new method of operation is used
rather than described, other people
would still be free to employ or
describe that method.93

Thus, the arrangement of menu options is
probably not protectable by copyright.

VI. The Rocky Shoals of “Free”
Software

A. “Free” is not a sticker price.

When you hear somebody refer to “Free
Software,” the worst you can do is mistake “free”
for a sticker price or think that it means “free to
do whatever you want.” Free Software may or may
not come free of charge, but software that meets
the Free Software Definition94 always comes
heavily encumbered.

The most popular Free Software license is the
GNU General Public License (GPL).95 A key
requirement of the GPL is that source code must

92 Id. at 811.

93 Id. at 815.

94 http://www.gnu.org/philosophy/free-sw.html,
visited January 7, 2013.

95 For a more extensive discussion of the GPL, see “A
Practical Guide to the GNU GPL,”
http://www.jw.com/publications/article/1453.

be made available to all licensees on demand, and
that any derivative work of a GPL program must
also be licensed under the GPL. So GPL software
cannot be appropriated into proprietary software,
because your competitor could acquire a copy and
you would be required to provide them with your
source code on demand. This provision is known
as “copyleft.”96

In contrast, there are many “Open Source”97
licenses that do not meet the Free Software
Definition and that permit proprietary extension
of the software without disclosing source code.
This is where we get Mac OS X, for example,
which is a proprietary extension of the Open
Source BSD Unix.98

B. A brief introduction to
hardware drivers.

One of the most well-known pieces of Free
Software is the Linux kernel. A kernel99 interfaces
directly with the hardware on a computer.
Applications run “on top of” the kernel, meaning
that they need the kernel to work properly.
Among other things, the kernel provides an
“abstraction layer” over the hardware, so that
applications can issue hardware-independent
calls, which the kernel translates into hardware-
dependent instructions.

For example, a programmer may want to use
the procedure “drawline(),” which takes as inputs
two (x,y) coordinate pairs and a color.
Predictably, this procedure draws a line between
the two points in the specified color. The
procedure call must be passed to a video card,
which is the piece of hardware that makes stuff
show up on the screen.

96 http://www.gnu.org/copyleft/, visited January 7,
2013.

97 See http://opensource.org/osd-annotated, visited
January 7, 2013 for the “Open Source Definition.” If
you are ever bored at a party full of computer geeks, try
starting a debate over Free Software vs. Open Source
Software.

98 See http://en.wikipedia.org/wiki/OS_X#History,
visited January 7, 2013.

99 See
http://en.wikipedia.org/wiki/Kernel_(computing).

http://www.gnu.org/philosophy/free-sw.html
http://www.jw.com/publications/article/1453
http://www.gnu.org/copyleft/
http://opensource.org/osd-annotated
http://en.wikipedia.org/wiki/OS_X#History
http://en.wikipedia.org/wiki/Kernel_(computing)

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 14 –

8862907v.2

The problem is that computers can have lots
of different video cards, and an nVidia GeForce
GTX 690 may need a completely different set of
instructions from an AMD Radeon HD 7870 (or
from a GeForce GTX 680, for that matter). And it
would be extremely cumbersome to write different
software for every possible hardware
combination.

So your software doesn’t know or care that
you’re using a GeForce GTX 690. It just calls

drawline(0,0,100,300,RED);100

and passes execution off to the kernel.
The kernel, for its part, recognizes drawline()

as a procedure to be executed on the video card,
and passes the procedure to the video driver.

The video driver includes hardware-specific
implementations of a standard set of software
tasks. Thus whether the driver is for an nVidia
GeForce card or an AMD Radeon card, it will
provide a set of common procedures, such as
drawline(), and carry out those procedures in
hardware-specific ways.

In a closed-source environment like
Microsoft Windows, drivers are always linked
dynamically. But in an open-source environment
like Linux, it’s possible (though usually
unnecessary) to statically-link drivers into the
kernel.

C. Dynamic linking of
proprietary drivers in
Linux is controversial.

Problems arise when for-profit companies
like AMD and nVidia run up against the
“information wants to be free” culture of the Free
Software Foundation.

The Linux kernel is licensed under the GPL.
But some companies want to keep proprietary
secrets about how their hardware works. They fear
that by releasing open source versions of their
drivers, they would be giving away a competitive
advantage.

What to do? One option, of course, is to
simply not support Linux, and that’s what many
vendors choose. In that case, volunteer

100 e.g., starting at location (0,0), draw a line to
(100,300) of the color RED.

programmers may step up and try to reverse
engineer the hardware to come up with a working
driver. Results are mixed, but as a general rule,
it’s nearly impossible to do as well as somebody
who has access to full hardware specifications.
And if features are missing from an open source
driver, they’re usually the hardware’s best (i.e.,
most proprietary) features. Unable to take full
advantage of those features, free software
enthusiasts may shun your hardware.101

Another option is to just provide a
proprietary, pre-compiled driver that dynamically
links to the kernel102—which is exactly what
companies like nVidia and AMD do, to the chagrin
of free software “purists.”103

The Free Software Foundation, which wrote
the GPL, unequivocally maintains that
dynamically linking to a library creates a
derivative work, and therefore the resulting
software must be released under the GPL. For
example, from their FAQ page:

[Q:] If a library is released under
the GPL … does that mean that any
software which uses it has to be
under the GPL or a GPL-
compatible license?

[A:] Yes, because the software as it
actually runs includes the
library.104

The FSF is “merely” the author of the GPL,
however, not the court or last resort. And their
bold, unqualified “Yes” is largely driven by
political concerns; they want the GPL to attach

101 Most people, of course, just buy a computer and use
whatever hardware and software come with it and
never worry about any of this.

102 Other cases include providing a closed-source
“binary blob” embedded within the source code, where
the important functionality is carried out by the binary
blob. See http://en.wikipedia.org/wiki/Binary_blob.

103 See, e.g., the mailing list discussion at
http://kerneltrap.org/node/1735, visited January 7,
2013.

104 http://www.gnu.org/licenses/gpl-
faq.html#IfLibraryIsGPL, visited January 7, 2013.

http://en.wikipedia.org/wiki/Binary_blob
http://kerneltrap.org/node/1735
http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL
http://www.gnu.org/licenses/gpl-faq.html#IfLibraryIsGPL

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 15 –

8862907v.2

itself to everything possible, because they believe
that all software should be free.105

Linus Torvalds, the original author of Linux,
also weighed in ten years ago, stating that in his
opinion, the controlling question is whether the
driver was originally written “with Linux in
mind,” or whether it was simply adapted from
another system.106 Linus is strongly admired in
the free software community, but he is also not
the court of last resort, and his personal opinion
does not control the legal effect of the GPL.

To frame the issue clearly, the GPL can only
attach itself to derivative works,107 as defined by
copyright law. The question, then, is whether
under established legal precedent a dynamically-
linked library is a “derivative work” of a program
that links to it.

The answer is we don’t know because there is
no precedent directly on point.

D. Transitory modifications
are not derivative works in
Galoob I and Galoob II.

There is, however, a 1992 Ninth Circuit
opinion that, with its underlying district court
opinion, is rather instructive. Taken together,
these are persuasive that dynamic linking does
not create a derivative work.

In Lewis Galoob Toys, Inc. v. Nintendo of
America, Inc.,108 the Ninth Circuit considered the

105 As any proud beard-wearing free software hippie
will tell you, “free” has nothing to do with how much
money you paid to get the software. It is a political
movement—practically a religion—surrounding four
“essential freedoms” you should have after you get the
software. See
http://www.gnu.org/philosophy/philosophy.html,
visited January 7, 2013.

106 http://kerneltrap.org/node/1735 (Linus Torvalds
message of Dec. 3, 2003).

107 See http://www.gnu.org/licenses/gpl.html, visited
January 7, 2013, § 0 (“To ‘modify’ a work means to
copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making
of an exact copy. The resulting work is called a
“modified version” of the earlier work or a work “based
on” the earlier work”) (emphasis added).

108 964 F.2d 965 (9th Cir. 1992) (“Galoob II”).

case of the “Game Genie”—an add-on product
designed to work with the Nintendo
Entertainment System that allowed players to
cheat109 at video games.

A user would insert Galoob’s Game Genie into
the slot on the NES console where a game
cartridge would normally go, and then insert a
game cartridge into an identical slot on top of the
Game Genie, so that the Game Genie stood
between the NES console and the game cartridge.
In a “configuration” screen, a player could then
enter up to three memory addresses, and a new
value for each.

For example, a player who knew where the
game stored the initial number of “lives” could
replace that with a much larger number. Then,
when the software accessed that memory address
during game play, the Game Genie would return
the modified value instead of the value
permanently stored on the cartridge.110 Galoob
also produced a “Code Book” with approximately
1,660 “codes” that provided specific cheats.111

Nintendo sued Galoob for copyright
infringement, alleging that in use the Game Genie
created an unauthorized derivative work of the
original video games.

The trial court found no infringement, relying
on Galoob’s argument that the alleged derivative
work was never “fixed” in any tangible medium.

[I]nherent in the concept of a
“derivative work” is the ability for
that work to exist on its own, fixed
and transferable from the original
work, i.e., having a separate
“form”. See § 101 (derivative work
definition). The Game Genie does
not meet that definition.112

The Ninth Circuit agreed that protection of a
derivative work required that it be fixed in a
tangible medium, but held that infringement did

109 Not to put too fine a point on it.

110 See Lewis Galoob Toys, Inc. v. Nintendo of
America, Inc., 780 F.Supp.2d 1283 (N.D. Cal., July 12,
1991) (Galoob I).

111 Id. at 1289.

112 Id. at 1291.

http://www.gnu.org/philosophy/philosophy.html
http://kerneltrap.org/node/1735
http://www.gnu.org/licenses/gpl.html

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 16 –

8862907v.2

not require fixation.113 The court still held,
however, that no independent work was created:

The district court's finding that no
independent work is created … is
supported by the record. The Game
Genie merely enhances the
audiovisual displays (or underlying
data bytes) that originate in
Nintendo game cartridges. The
altered displays do not incorporate
a portion of a copyrighted work in
some concrete or permanent form.
… [T]he Game Genie cannot
produce an audiovisual display; the
underlying display must be
produced by a Nintendo
Entertainment System and game
cartridge. Even if we were to rely
on the Copyright Act's definition of
“fixed,” we would similarly
conclude that the resulting display
is not “embodied” … in the Game
Genie. It cannot be a derivative
work.114

 Applying this reasoning to dynamically-
linked proprietary Linux kernel modules, one can
reasonably argue that the binary module similarly
does not contain any embodiment of the
underlying work (as it would in the case of a
statically-linked work) and that the module is not
capable, on its own, of producing any effect in the
computer. It requires a running kernel and simply
modifies certain behaviors of that underlying
software.115

113 Galoob II, 964 F.2d at 968 (“A derivative work must
be fixed to be protected under the Act, see 17 U.S.C. §
102(a), but not to infringe.”)

114 Id. (emphasis added).

115 A reasonable counter-argument would be that the
two works are “joined” at runtime, creating in memory
a new work that embodies both the kernel and the
module. I personally lean away from this interpretation
as the kernel and the module will not usually reside in
a single, contiguous memory block. In dynamic linking,
the two pieces of code are more analogous to two ships
passing signals to one another than to two seamen on
the same ship talking to each other.

Interestingly, under the same analysis
infringement may lie where a proprietary kernel
dynamically links with a GPL driver. This
scenario is not unknown, but is less common than
the proprietary driver example. However, neither
has, to my knowledge, been specifically tested in
court.

E. Who’s going to sue over
violating open source
licenses?

One argument sometimes advanced in favor
of proprietary drivers is that it doesn’t really
matter, because free software hippies are
(practically by definition) all broke and they’re
never really going to sue anyway. But the
empirical evidence says otherwise.

Perhaps the first meaningful test of an open
source license was the Federal Circuit’s Jacobsen
v. Katzer.116 Jacobsen was a free software hobbyist
who made his code available for free download
under the terms of the “Artistic License.”117 Katzer
developed commercial, proprietary model train
software, and used some of Jacobsen’s code
without following the terms of the license.118

When Jacobsen sued, Katzer argued—and the
district court agreed—that the Artistic License was
an “intentionally broad nonexclusive license [that]
has unlimited scope and thus did not create
liability for copyright infringement.”119

Katzer argued that he was at worst guilty of a
breach of contract.120 And since contract actions
do not carry a presumption of irreparable harm,
Jacobsen was not entitled to a preliminary
injunction.121 Furthermore, Jacobsen was not
entitled to money damages because the contract
required no money to be paid.122 The result of this

116 535 F.3d 1373 (Fed. Cir. 2008).

117 Id. at 1376.

118 Id.

119 Id.

120 Id. at 1377.

121 Id.

122 Id.

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 17 –

8862907v.2

argument would be that Katzer had carte blanche
to use Jacobsen’s code as he saw fit.

But the Federal Circuit reversed the district
court, finding that the Artistic License was instead
a conditional copyright license.

The Artistic License states on its
face that the document creates
conditions: “The intent of this
document is to state the conditions
under which a Package may be
copied.” (Emphasis added.) The
Artistic License also uses the
traditional language of conditions
by noting that the rights to copy,
modify, and distribute are granted
“provided that” the conditions are
met.123

Thus, “[c]opyright holders who engage in
open source licensing have the right to control the
modification and distribution of copyrighted
material.”124

Around the same time as Jacobsen, Erik
Andersen, the former maintainer of the GPL
“Busybox” software started aggressively enforcing
his license by suing several commercial
infringers.125 Although these cases have not
yielded any reported opinions, the results have
been favorable for the GPL, including both money
damages and injunctive relief.

VII. Conclusion

Rocky shoals are not for the faint of heart. If
your client is risk averse or particularly
conservative, negotiating safe passage is always
the safest—if not the most exciting—course.126
And as a general rule, if you’re going to use
somebody else’s stuff, you have to play by their
rules.

123 Id. at 1381.

124 Id.

125 See
http://en.wikipedia.org/wiki/BusyBox#GPL_lawsuits,
visited Jan. 7, 2013.

126 On the other hand, if your client is Horatio
Hornblower, he may prefer to blast the enemy’s shore
batteries with their own powder and sail off with a line-
of-battle ship in hot pursuit.

But it’s also worthwhile for your clients to
know that sometimes they can take advantage of
somebody else’s work for their own purposes,
even without permission. If there is a business
benefit to copying a competitor’s non-protectable
functional ideas, a careful analysis of the case law
may prove that the copying is allowable. As the
courts have not drawn a bright line between non-
protectable function and protectable expression,
those cases will have to be examined individually
in light of all the facts and circumstances.

http://en.wikipedia.org/wiki/BusyBox#GPL_lawsuits

Navigating the Rocky Shoals of Software Copyrights Chapter 17

– 18 –

8862907v.2

Curriculum Vitae
Sean C. Crandall

Jackson Walker, LLP
112 E. Pecan Ste. 2400
San Antonio, TX 78205

(210) 978-7700
scrandall@jw.com

http://www.jw.com/scrandall
Biography

Sean Crandall's practice involves all aspects of intellectual property, including patents, trademarks,

copyrights and licensing. He has prosecuted and litigated patents in diverse subject matter areas, including
computer science, electronics, wireless communication, medical devices, oil and gas, and electrical and
mechanical systems.

Before entering the legal profession, Mr. Crandall spent seven years with a major U.S. defense

contractor and completed an undergraduate degree in electrical engineering with an emphasis in computer
engineering. His technical expertise and experience includes:

• Software design and development (including C, C++, LabVIEW, Pascal, FORTRAN and Gensym G2)
• Design and troubleshooting of hardware interfaces
• Modeling and simulation of complex systems
• Design and analysis of digital systems (including Verilog HDL)
• Computer architecture (subsystem level to logic level)
• Integration of analog and digital electronics
• Parts and materials engineering (selection, qualification, testing and sustainment) for high-reliability

radiation-hardened systems

Education

J.D., Baylor University School of Law (2007)
 Senior Executive Editor, Baylor Law Review (2006 - 2007)
 Associate Editor, Baylor Law Review (2006)

B.S. Electrical Engineering, The University of Texas at San Antonio (formal emphasis in Computer

Engineering) (2003)

Bar Admissions

2007, Texas
2005, United States Patent and Trademark Office, Reg. No. 57,776.

Court Admissions

Western District of Texas
Eastern District of Texas

mailto:scrandall@jw.com
http://www.jw.com/scrandall

	I. Introduction
	II. In Which Our Hero is Dashed on the Rocky Shoals of Software Coypright
	A. The dream case walks through your door.
	B. What are the rocky shoals?

	III. Software Programming for Dummies and Lawyers
	A. Computers are stupid, but they’re really good at repetition.
	B. Most programs are written in high-level languages.
	C. Procedures encapsulate complexity.
	D. Libraries let you use other people’s code.
	E. Application Programming Interfaces are the bridge between libraries and new code.
	F. Programs can be statically or dynamically linked.

	IV. Google’s Braving of the Shoals in Oracle v. Google
	A. Google wanted Java for Android.
	B. Oracle’s sued over 37 Java packages.
	C. The jury found that Google copied Java’s APIs.
	D. The Court held that APIs are not protectable.
	E. Oracle affects Android’s “scrubbed” Linux header files.
	F. A cautionary tale about programmers’ utility libraries.

	V. Non-Literal Copying in Other Cases
	A. Creative structure and sequence in Whelan Associates.
	B. Abstraction-Filtration-Comparison in Altai.
	C. Interoperability and fair use in Sega v. Accolade.
	D. Command hierarchies in Lotus v. Borland.

	VI. The Rocky Shoals of “Free” Software
	A. “Free” is not a sticker price.
	B. A brief introduction to hardware drivers.
	C. Dynamic linking of proprietary drivers in Linux is controversial.
	D. Transitory modifications are not derivative works in Galoob I and Galoob II.
	E. Who’s going to sue over violating open source licenses?

	VII. Conclusion

