ORNL Uncovers Greener Method To Recycle Lithium-Ion Batteries

Bergeson & Campbell, P.C.
Contact

Bergeson & Campbell, P.C.
 
On June 1, 2021, the Oak Ridge National Laboratory (ORNL) announced that its scientists have developed a novel solvent that results in a more efficient process to recover valuable materials from used lithium-ion batteries. According to ORNL’s press release, this new method supports a stable domestic supply chain for new batteries and keeps old ones out of landfills.
 
Currently, the recycling process of batteries involves smelting, which is an expensive, energy-intensive process that releases toxic gas. This new process developed by ORNL, however, recovers cathode materials and aluminum foils from lithium-ion batteries using a less hazardous solvent. It is a wet chemical process that uses triethyl phosphate to dissolve the binder material that adheres cathodes to metal foil. This process results in efficient recovery of cobalt-based cathodes and graphite, among other valuable materials, such as copper foils, that can be reused in new batteries. ORNL’s Ilias Belharouak stated that, in addition to repurposing materials, the new process reduces toxic exposure for workers. The full publication of ORNL’s study is available here.

[View source.]

DISCLAIMER: Because of the generality of this update, the information provided herein may not be applicable in all situations and should not be acted upon without specific legal advice based on particular situations.

© Bergeson & Campbell, P.C. | Attorney Advertising

Written by:

Bergeson & Campbell, P.C.
Contact
more
less

Bergeson & Campbell, P.C. on:

Reporters on Deadline

"My best business intelligence, in one easy email…"

Your first step to building a free, personalized, morning email brief covering pertinent authors and topics on JD Supra:
*By using the service, you signify your acceptance of JD Supra's Privacy Policy.
Custom Email Digest
- hide
- hide

This website uses cookies to improve user experience, track anonymous site usage, store authorization tokens and permit sharing on social media networks. By continuing to browse this website you accept the use of cookies. Click here to read more about how we use cookies.