

Leonard H. Dougal

Jackson Walker L.L.P. Idougal@jw.com • (512) 236-2000

Shale Play Hydraulic Fracturing: Water Quality and Supply Issues

Texas Rural Water Association Technical Conference July 14, 2011 Galveston, Texas

Austin

Range Resources EPA Emergency Order

- EPA Emergency Unilateral Order Dec. 7, 2010; Parker County (Barnett Shale); Effective Immediately -- Issued w/o Hearing
- "Concerns with water quality, indoor air quality, and potential explosivity."
- "The contaminants identified...may present an imminent and substantial endangerment to the health of persons . . . are potentially explosive or flammable, and benzene if ingested or inhaled could cause cancer . . . "
- "EPA has determined that appropriate state and local authorities have not taken sufficient action to address the endangerment...and do not intend to take such action at this time...."

THE TEXAS TRIBUNE

Even in Texas, Concerns Grow About Gas Drilling

€ <u>Enlarge</u>

photo by: Stuart Palley

Demonstrators protest against natural gas drilling in downtown Fort Worth, Wednesday April 20th, 2011. The day marked the one year anniversary of BP's Deepwater Horizon rig explosion in the Gulf of Mexico.

by Kate Galbraith | April 25, 2011 | 35 Comments

Texans pride themselves on being the heart of the nation's oil and gas business. But even here, public concern about the environmental consequences of natural gas drilling is growing. FULL STORY

Media's Take on Fracing

THE TEXAS TRIBUNE

Does Gas Drilling Put Radiation in Texas Water?

 $\mathfrak{Q}_{\underline{\mathsf{Enlarge}}}$

photo by: Creative Commons/Daniel Foster

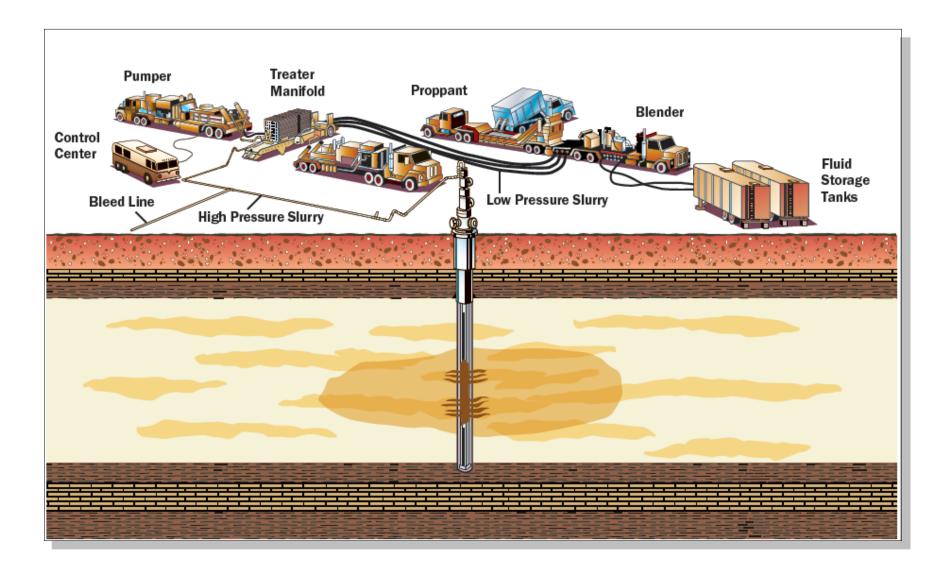
by Kate Galbraith | March 11, 2011 | 2 Comments

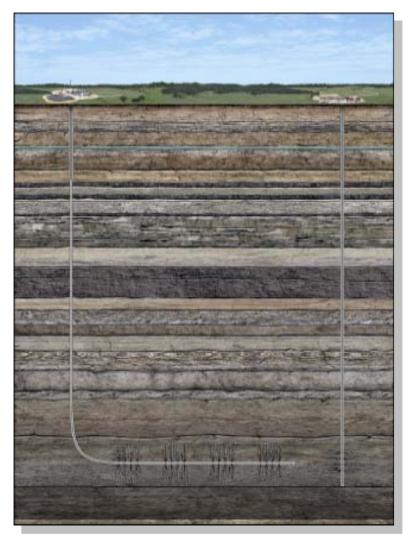
With drilling on the rise, the Texas Railroad Commission and the Texas Commission on Environmental Quality answer questions about whether Texans need to worry about radioactivity in their water. FULL STORY

Presentation Outline

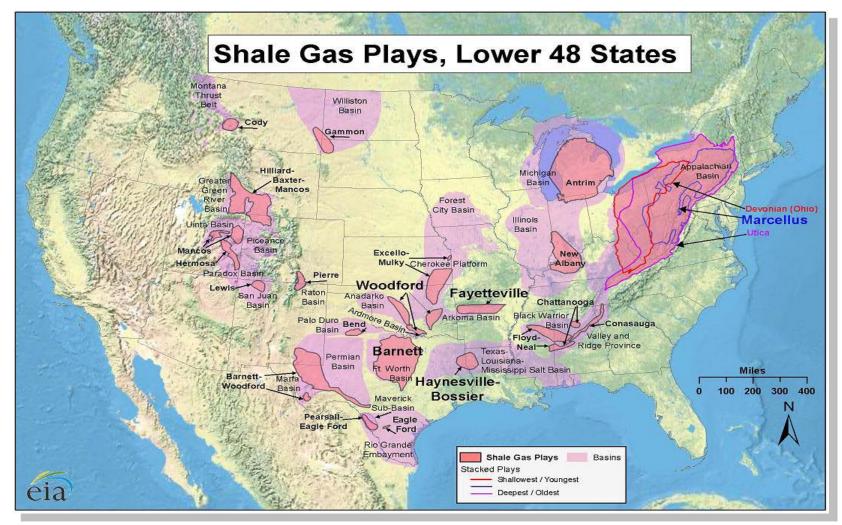
- Unconventional Shale Development in Texas
- Federal and State Regulatory Overview
- Water Needs, Supply Options, and Challenges
- Potential Risks to Groundwater and Surface Water
- Range Resources Case

Hydraulic Fracturing Basics


- Patented in 1948; "shooting" wells date back to 1860s.
- Method: Pumping fluids at high pressures into producing formations to create fissures to allow more natural gas to escape.
- Typically takes place in horizontal wells, which may extend thousands of feet of horizontally at depth.
- Fracturing fluids are composed typically of:
 - 90% water
 - 9.5% sand
 - 0.5% other chemicals



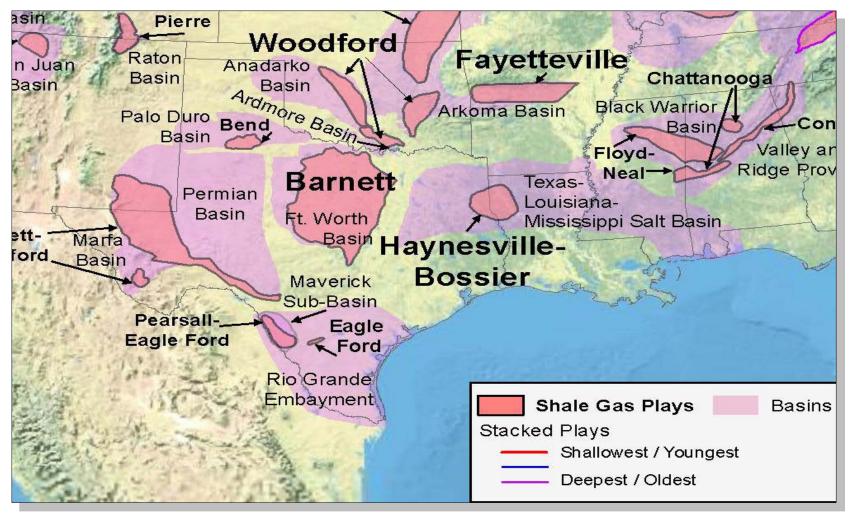
Hydraulic Fracturing of Marcellus Shale Well Source: DOE, Fracing Primer



Horizontal and Vertical Well Completions Source: DOE, Fracing Primer

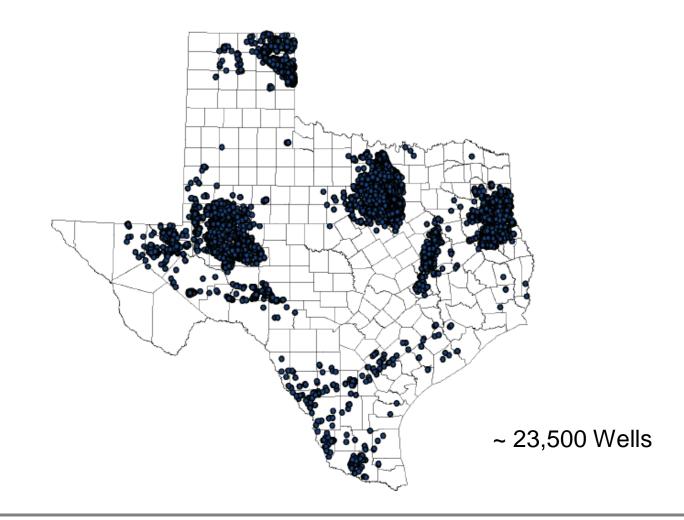
U.S. Shale Plays

Source: U.S. Energy Information Administration (EIA), http://www.eia.doe.gov/energy_in_brief/about_shale_gas.cfm. 10


Three Primary Texas Shale Plays

- Barnett (Gas)
 - Ft. Worth area
- Haynesville (Gas)
 Far East Texas Extends into Louisiana
- Eagle Ford (Gas and Oil)

- South of San Antonio



Texas Shale Plays

All Texas Frac Jobs 2005-2009

Source: TWDB Frac Study

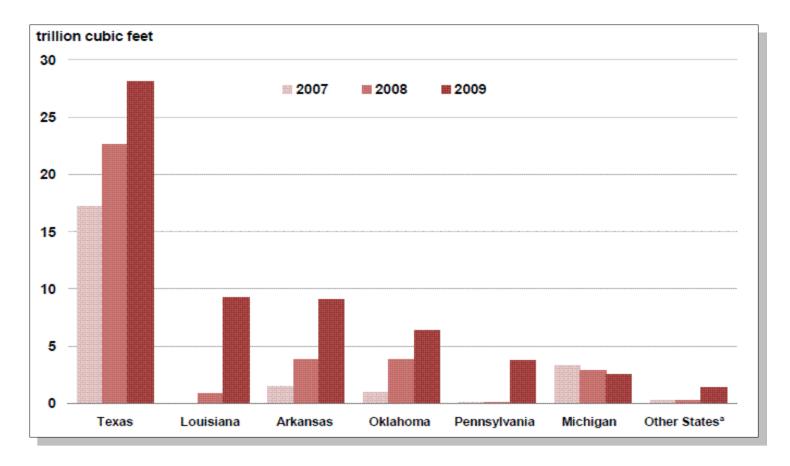
Shale Natural Gas Reserves and Production (BCF)

U.S. Proven Reserves & Production:

Reserves

- 2007: 23,304
- 2008: 34,428
- 2009: 60,644

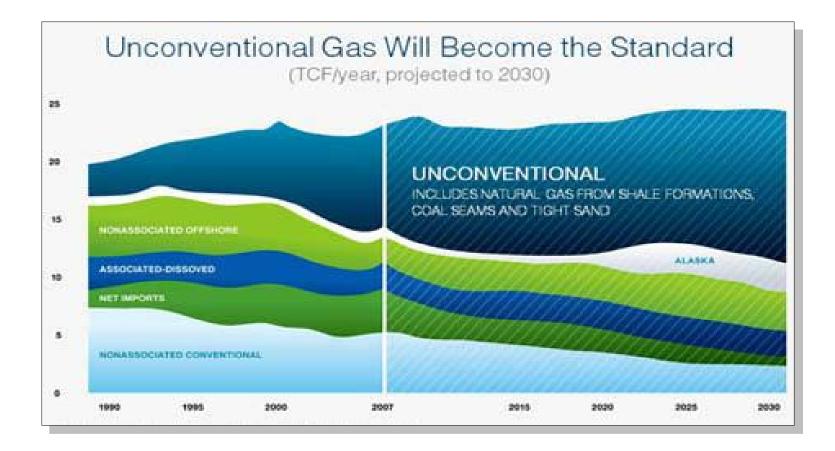
Production


- 2007: 1,293
- 2008: 2,116
- 2009: 3,110

- Texas Proven Reserves & Production:
- Reserves
 - 2007: 17,256
 - 2008: 22,667
 - 2009: 28,167
- Production
 - 2007: 988
 - 2008: 1,503
 - 2009: 1,789

Sources: EIA, <u>http://www.eia.doe.gov/dnav/ng/ng_prod_shalegas_s1_a.htm</u> and EIA, http://www.eia.doe.gov/dnav/ng/ng_enr_shalegas_dcu_NUS_a.htm.

Shale Natural Gas Reserves



Source: EIA, http://www.eia.doe.gov/oil_gas/natural_gas/data_publications/crude_oil_natural_gas_reserves/cr.html.

JACKSON WALKER L.L.P.

ATTORNEYS & COUNSELORS

Shale Natural Gas Production

Federal Regulation

- <u>Safe Drinking Water Act</u> exempts fracing (except w/ diesel fuel) from regulation as "underground injection" by the Energy Policy Act of 2005. (42 U.S.C. 300h(d)(1)(B)(ii)).
 - Bills introduced March 15, 2011 to remove exemption (HR 1084).
 - Similar bills introduced in Senate (S 587) and in past (2009 HR 2766).
- April 12, 2011: EPA Deputy Administrator Bob Perciasepe testified before Congress that using diesel in fracing requires an SDWA permit or is a violation.
 - Some members of industry have previously stated that diesel is used, but also report being unable to obtain diesel fracing permits from EPA in past despite efforts.
- April 26, 2011: EPA Administrator Lisa Jackson announced EPA will issue guidance soon on the use of diesel fuel in fracing.

Other Federal Studies and Reports

- April 16, 2011:
 - Congressional report prepared by Waxman, Markey, and DeGette outlining chemicals used in fracing, including benzene, lead, and methanol.
 - Alleged use of 29 chemicals that are known or possible carcinogens.
- April 2011:
 - Prepublication of report by Cornell Professors that CO2 emissions from shale fracing are greater than coal.

Sources: U.S. House Committee on Energy and Commerce, Chemical Used in Hydraulic Fracturing (April 2011) and Robert Howard, et al, Methane and the Greenhouse-Gas Footprint of Natural Gas from Shale Formations (2011)

EPA Hydraulic Fracing Study Plans

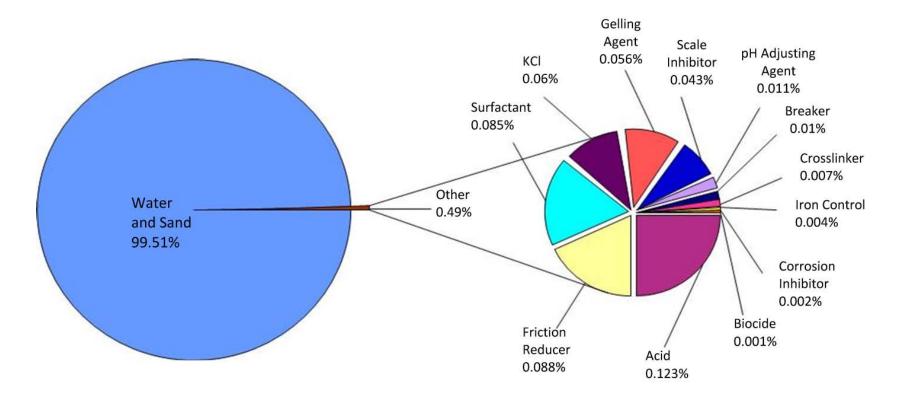
- February 8, 2011 EPA releases Draft Hydraulic Fracturing Study Plan
- Study designed to examine "life cycle" of fracing, particularly potential affect to drinking water resources and human exposure to chemicals.
- Study will analyze and research questions involving:
 - Water Acquisition; Chemical Mixing; Well Injection; Flowback and Produced Water; and Wastewater Treatment and Waste Disposal
- Study will include:
 - Retrospective case studies, possibly in Barnett Shale counties of Wise and Denton Counties
 - Prospective cases studies, possibly in Flower Mound/Bartonville.
- Study expected to be completed in 2012, with 2014 follow-up.
- In 2004, EPA conducted study finding that hydraulic fracturing in coal-bed methane wells pose little to no threat to underground drinking water.

Texas Regulation

- Railroad Commission of Texas (RCT) has primary oversight authority, not Texas Commission on Environmental Quality (TCEQ)
- May 2009 RCT Chairman letter: "not...a single documented contamination case associated with hydraulic fracturing."
- No specific regulation of Frac methods, but generally covered by RCT oil and gas rules.
- Bills filed in 2011 to increase fracing regulation died (Except SB 3328)

Existing RCT Regulations

- Groundwater protection regulations include:
 Rule 5 Permit required for drilling and deepening of wells (does not specifically cover fracing operations).
 - **Rule 8** Groundwater protection and regulates storage and disposal of oil and gas wastes.
 - Rule 9 Disposal wells for oil and gas waste
 - **Rule 13** Establishes casing, cementing, drilling, and completion of well requirements.
 - **Rule 46** Requires permit for fluid injection for enhanced oil recovery but does NOT regulate fracing. *Rules are at 16 TAC Section 3.XX*



Texas HB 3328 Frac Fluids Disclosure

- Mandates Disclosure of the composition of hydraulic fracturing fluids used in fracturing wells
 - Site Specific Well by Well
 - MSDS Chemicals and Non-MSDS (intentionally added) to be posted on Internet and filed with RCT
 - Trade Secret Protection per Public Information Act
- **RCT** has begun rulemaking (to be adopted by July 1, 2012)

Volumetric Composition of Frac Fluid

DOE, Modern Shale Gas Development in the United States: A primer

Fracing Chemical Additives

Additive Type	Main Compound(s)	Purpose	Common Use of Main Compound	
Acid, Diluted (15%)	Hydrochloric acid or muriatic acide	Help dissolve minerals and initiate cracks in the rock	Swimming pool chemical and cleaner	
Biocide	Glutaraldehyde	Eliminates bacteria in the water that produce corrosive byproducts	Disinfectant; sterilize medical and dental equipment	
Breaker	Ammonium persulfate	Allows a delayed break down of the gel polymer chains	Bleaching agent in detergent and hair cosmetics, manufacture of household plastics	
Corrosion Inhibitor	N,n-dimethyl formamide	Prevents the corrosion of the pipe	Used in pharmaceuticals, acrylic fibers, plastics	
Crosslinker	Borate salts	Maintains fluid viscosity as temperature increases	Laundry detergents, hand soaps, and cosmetics	
Friction Reducer	Polyacrylamide; Mineral oil	Minimizes friction between the fluid and the pipe	Water treatment, soil condition; Make-up remover, laxatives, candy	
Gel	Guar gum or hydroxyethyl cellulose	Thickens the water in order to suspend the sand	Cosmetics, toothpaste, sauces, baked goods, ice cream	

Fracing Chemicals Additives

Additive Type	Main Compound(s)	Purpose	Common Use of Main Compound	
Iron Control	Citric acid	Prevents precipitation of metal oxides	Food additive, flavoring in food and beverages; Lemon Juice ~7% Citric Acid	
KCl	Potassium chloride	Creates a brine carrier fluid	Low sodium table salt substitute	
Oxygen Scavenger	Ammonium bisulfite	Removes oxygen from the water to protect the pipe from corrosion	Cosmetics, food and beverage processing, water treatment	
pH Adjusting Agent	Sodium or potassium carbonate	Maintains the effectiveness of other components, such as crosslinkers	Washing soda, detergents, soap, water softener, glass and ceramics	
Proppant	Silica, quartz sand	Allows the fractures to remain open so the gas can escape	Drinking water filtration, play sand, concrete, brick mortar	
Scale Inhibitor	Ethylene glycol	Prevents scale deposits in the pipe	Automotive antifreeze, household cleansers, and deicing agent	
Surfactant	Isopropanol	Used to increase the viscosity of the fracture fluid	Glass cleaner, antiperspirant, and hair color	

Source: DOE, Modern Shale Gas Development in the United States: A Primer

FracFocus.Org

Hydraulic Fracturing Fluid Product Component Information Disclosure

4/24/2011
Louisiana
De Soto
1703125178
Shell Western E&P
Advanced L&T 11-1H
-83.67542344
32.03583258
NAD03
Gas
12,130
7,396,938

draulic Fracturing Fluid Composition

Trade Name	Supplier	Purpose	Ingredients	Chemical Abstract Service Number (CAS #)	Maximum Ingredient Concentration in Additive (% by mass)**	Maximum Ingredient Concentration in HF Fluid (% by mass)**	Comments
Fresh Water	Operator				100.009	90.658788	Density = 8.330
SAND - COMMON WHITE	Halliburton	Proppant	Crystalline silica, quartz	14808-60-7	100.00%	3.31730%	
SAND - PREMIUM WHITE	Hallburton	Proppant	Crystalline silica, quartz	14808-00-7	100.00%	4.493423	
PRC SAND PREMIUM	Hallburton	Ptoppant	Crystaline silca, quartz	14808-60-7	100.00%	1.05025%	
			Hexamethylenetetramine	1000-7-0	2.009	0.02100%	
			Phenol / formaldehyde resin	900303-35-4	5.001	0.052518	
FR-86	Halliburton	Friction Reducer	Hydrotreated light petroleum distillate	84742-47-8	30.039	0.029931	
BE-9	Hallburton	Blocide	Tributyl tetradecyl phosphonium chloride	81741-28-8	10.009	0.005528	
Clayfix 3	Halliburton	Clay Control	Sodium ohloride	7647-14-5	30.00%	0.07059%	
VICON NF DREAKER	Hallburton	Breaker	Chlorous acid, sodium salt	7758-19-2	10.00%	0.00109%	
			Sodium chloride	7847-14-5	30.008	0.00328%	
LGC-33 UC	Hallburton	Geling Agent	Guar gum	9000-30-0	60.008	0.032648	
			Naphtha, hydrotreated heavy	6474248-9	60.008	0.032641	
SP DREAKER	Halliburton	Dreaker	Sodium persuifate	7775-27-1	100.009	0.000045	
Opfikleen-WF™	Hallburton	Surfactant	Sodium perborate tetrahydrate	19485-03-7	100.008	0.007921	
Tatal Mister Vision		include fresh water, produced wat	and the second of section				

Information is based on the maximum potential for concentration and thus the total may be over 100%

All component information listed was obtained from the supplier's Material Safety Data Sheets (MSDS). As such, the Operator is not responsible for inaccurate and/or incomplete information. Any questions regarding the content of the MSOS should be directed to the supplier who provided it. The Occupational Safety and Health Administration's (IOSHA) regulations govern the oriteria for the disclosure of this information. Please note that Federal Law protects (proprietary, thade secref, and 'confidential business information' and the oriteria for how this information is reported on an MSOS is subject to 28 OTR 1010.1200(i) and Appendix D.

Average Water Demands of Well Fracing

• Barnett

- Water Use (gallons/well): 2,300,000

• Haynesville

- Water Use: 2,700,000

• Marcellus (PA)

- Water Use: 3,800,000

Source: EPA Frac Study Plan

Source of Frac Water

- Water used may come from ground or surface water
- Water typically stored on-site in 20,000-gallon portable steel ("frac") tanks, impoundments, or centralized locations serving multiple sites.
 - In Barnett water may be stored in impoundments ranging from 8 million to 163 million gallons
 - 163 million gallons may serve 2,000 gas wells
- Efforts to recycle flowback water produced in fracturing process
 - Estimates range from 10 to 40 percent recovery of flowback water in first 2 weeks.

Source: DOE, Fracing Primer

Lined Fresh Water Supply Pit from Marcellus Shale Source: DOE, Fracing Primer

Prevalence of Frac'd Wells

- US: 35,000 wells fractured per year.
- US: Estimated annual water use of 70 to 140 billion gallons.
 - Equivalent water use of 40-80 cities with population of 50,000 or 1 to 2 cities of 2.5 million.
- Barnett Shale: Estimated annual water use of 2.6 to 5.3 billion gallons, estimated to peak at 9.5 billion gallons in 2010 or 1.7 % of all freshwater demand in Barnett Shale area.

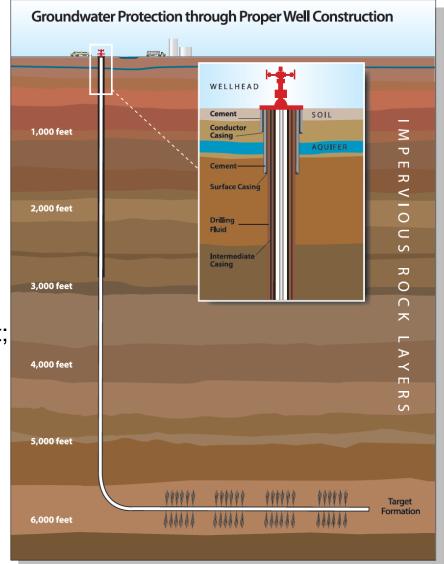
Existing Texas Water Use for Fracing (2008 Data)

Play	Water Use (thousand AF)
Barnett Shale	25.45
Haynesville Shale	0.11
Eagle Ford Shale	0.07
Woodford/Barnett PB/Pearsall Shale	0.09
Anadarko Tight Formation	2.22
East Texas Tight Formation	4.26
Permian Basin Tight Formation	3.09
Gulf Coast Tight Formation	0.6
Caballos/Tesnus Tight Formation	0.17
Sum Shale (filtered at >0.001 Mgal)	25.71
Sum Tight Fm. (filtered at >0.001 Mgal)	10.33
Sum All (filtered at >0.001 Mgal)	36.04

Future Texas Frac Water Demand

- Fracing will increase from the current ~ 37,000
 AF to a peak of ~ 120,000 AF by 2020-2030
 - Expected Texas peak water demand by mid-2020s.
- Water use is contingent on price of gas
- Gas prices > \$10/Mcf:
 - All gas plays, even with marginal permeability, are expected to be fraced
- Gas prices < \$5/Mcf
 - Less gas wells will likely be drilled, less water use expected

Cost of Frac Water (Large Frac)


Assume 10M Gal/Well

- \$0.70 per bbl = \$167,000
- 3.00 per 1000 = 30,000
- \$100 per AcreFt= \$ 3,070

Risk to Groundwater

- Little to no evidence of direct impact to groundwater.
- Potential contamination of groundwater if mechanical integrity of well is compromised.
- Lowering aquifer water levels by water consumption from fracing may:
 - Affect water quality by exposing mineral to oxygen-rich environment;
 - Increasing salination and potential chemical contamination;
 - Increase bacterial growth;
 - Cause upwelling of lower quality water from deeper within aquifers.

Sources: <u>http://www.api.org/policy/exploration/hydraulicfracturing/</u> and EPA Frac Study Plan

Depths of Freshwater and Formation

- Barnett
 - Freshwater Depth: 1,200
 - Formation Depth: 6,500-8,500 ft.
- Haynesville
 - Freshwater Depth: 400
 - Formation Depth: 10,500-13,500
- Marcellus (PA)
 - Freshwater Depth: 850
 - Formation Depth: 4,000-8,500

<u>Risks to Surface Water:</u> Flowback

- After fracing, pressure decreases and frac fluid flows back to the surface.
 - Amount of frac fluid recovered as flowback varies from 25% to 75%.
 - Flowback rate in first few days can exceed 100,000 gallons per day
 - Will drop to ~ 50 gallons per day over time
- As of 2009, none of 27 states with fracing require reporting of flowback
- Flowback can have frac fluids and high TDS values, concentrations of major ions (e.g. barium, bromide, calcium, iron), radionuclides, VOCs, and other natural occurring elements.

Handling/Disposing of Flowback

- Flowback and produced water are held in storage tanks and water impoundment pits prior to and during treatment, recycling, and disposal.
- Underground injection is primary method for disposal for flowback and produced water.
 - Concerns regarding injection capacity and cost of trucking wastewater to injection site.
- Potential for use of publicly owned treatment works (POTW) or commercial treatment facilities if in populated areas.
 - POTWs not designed to treat fracing wastewaters
- Releases, leaks, and/or spills involving storage and transportation of flowback and produced water could contaminate shallow drinking water aquifers and surface water bodies.
- Reuse is possible, with treatment.

Source: EPA Frac Study Plan

Range Resources: EPA Emergency

<u>Order</u>

- December 7, 2010: EPA issues emergency order alleging contamination of two wells.
- Order requires Range Resources, amongst other requirements, to:
 - Provide drinking water within 48 hours to affected residents;
 - Install explosivity meters within 48 hours;
 - Identify gas flow, eliminate gas flow if possible, and remediate areas of aquifer that have been impacted.
- Alleges methane contamination, not fracing fluid specifically
- Alleges that state and local authorities had not taken sufficient action to address endangerment
- Emergency Order under Section 1431 of SDWA.
 - No notice, no opportunity for Range Resources to comment, and no presentation evidence.
 - Failing to comply with Emergency Order could lead to \$16,500 per violation per day penalty.

EPA/DOJ Suit & RCT Finding

- January 18, 2011: U.S. DOJ files complaint against Range Resources for not complying with EPA's emergency order.
- January 20, 2011: Range Resources appeals order.
- March 22, 2011: Following investigation, RCT Commissioners unanimously vote to clear Range Resources of EPA allegations. EPA did not testify at hearing.

Subsurface Trespass in Texas

- In Coastal Oil v. Garza Energy Trust, the Texas Supreme Court held that the rule of capture prevented a neighbor from recovering damages when subsurface hydraulic fracturing extended into the neighbor's land.
 - Court held that since the only claim of damage from trespass was damages from drainage resulting from fracing, the claim was precluded by rule of capture.
- Texas Supreme Court intentionally avoided question of whether fracing extending beneath another's land was itself a subsurface trespass.
 - Long history of case law where Texas Supreme Court has decided not to address question.
 - In 1992, Texas Supreme Court in Geo Viking, Inc. v. Tex-Lee Operating Company said fracing constituted a trespass when it extended onto neighboring property but withdrew the opinion 6 months later.

Sources: Coastal Oil v. Garza Energy Trust, 268 S.W.3d 1 (Tex. 2008) and Geo Viking, Inc. v. Tex-Lee Operating Company, 839 S.W.2d 797 (Tex. 1992) (per curiam op withdrawn on reh'g).

Regulatory Forecast

- Greater disclosure of chemical additives (site specific)
- Recordkeeping and reporting
- Narrowing of UIC exemptions
- Ban on use of certain additives
- Restrictions on Disposal of Flowback Fluids

QUESTIONS?

Leonard H. Dougal

Jackson Walker L.L.P. 100 Congress Avenue, Suite 1100 Austin, Texas 78701 Telephone: (512) 236-2000 Idougal@jw.com

