Blockchain Technology Could be Key to Smarter Energy Grid

Mintz - Energy & Sustainability Viewpoints

The same technology underlying the efficiency of bitcoin transactions and largely responsible for the online currency’s success could be the key to developing a smarter energy grid. Blockchain, a shared, encrypted ledger maintained by a network of computers, gives bitcoin transactions their unique peer-to-peer quality, making the entire system decentralized without a central repository or single administrator. While the electricity grid still relies on centralized plants generating power sent over long distances, blockchain technology could help modernize the system, making it easier for smaller, distributed networks to connect to the grid and exchange power locally.

These smaller, distributed power generators and storage systems, such as rooftop solar panels and electric-vehicle batteries, are already connecting to the grid in growing numbers. However, when these systems produce excess energy, they are forced to sell it back to utilities, often waiting 60-90 days for compensation. A blockchain-based system would allow local energy producers to trade energy peer-to-peer with consumers instantly. Neighbors could make more efficient use of the energy they produce than selling it back to the grid by simply trading with one another.

Startups have jumped at the prospect of facilitating local energy exchange. Power Ledger’s peer-to-peer product aims to develop microgrids based on a shared system of solar panels and battery storage. LO3 Energy’s system allows people to buy and sell locally generated solar energy within their communities, and the company has already launched a working miniature utility grid project in Brooklyn.

The reason these small-scale systems work is because blockchain tracks energy generation and consumption and facilitates the transactions between individuals. The technology makes possible local energy distribution that is more efficient than transmitting energy over long distances. As a result, neighborhoods can be more resilient to power outages and energy needs are more easily met when demand fluctuates.

While blockchain has opened the possibility for peer-to-peer energy transfer within communities, the implications for the grid at large may be even more significant. If the technology proves scalable, the grid could see an integrated trading system that would permit businesses to trade their option to use electricity during any given time frame, providing massive efficiency benefits for grid operators. Blockchain could also enable customers to switch power suppliers more easily by making existing processes, such as meter registration, quicker and cheaper. The technology could even become the foundation of utilities’ grid-management systems by helping to automatically diagnose network emergencies and reconfigure in reaction to them. Ultimately, blockchain’s success could result in a distributed electricity grid, made up of large and small power-generation systems, that is uniquely equipped to handle our evolving energy needs.

[View source.]

DISCLAIMER: Because of the generality of this update, the information provided herein may not be applicable in all situations and should not be acted upon without specific legal advice based on particular situations.

© Mintz - Energy & Sustainability Viewpoints | Attorney Advertising

Written by:

Mintz - Energy & Sustainability Viewpoints

Mintz - Energy & Sustainability Viewpoints on:

Reporters on Deadline

"My best business intelligence, in one easy email…"

Your first step to building a free, personalized, morning email brief covering pertinent authors and topics on JD Supra:
*By using the service, you signify your acceptance of JD Supra's Privacy Policy.
Custom Email Digest
- hide
- hide

This website uses cookies to improve user experience, track anonymous site usage, store authorization tokens and permit sharing on social media networks. By continuing to browse this website you accept the use of cookies. Click here to read more about how we use cookies.